

 Units 9-10/12 Mars Road
 Tel +61 2 9420 0690
 CAP-XX Pty Limited

 Lane Cove NSW 2066
 Fax +61 2 9420 0692
 ABN 28 077 060 872

 Australia
 www.cap-xx.com
 ACN 077 060 872

HS206 SUPERCAPACITOR Datasheet Rev 1.1

Features

- High capacitance (600mF @ DC) •
- Low ESR (70m Ω @ step change in current);
- . High peak current
- High pulsed power .
- Thin form factor .

Typical Applications

- High power LED Flash .
- Improved audio performance
- Automatic Meter Reading •
- PC Cards, Compact Flash Cards & USB .
- Load leveling for PDAs & cell phones
- Power support during battery contact bounce

Electrical Specifications

Table 1: Nominal Characteristics

Device	Nominal Capacitance ¹	Nominal ESR ²	Tolerance about nominal value	Footprint	Height
HS206	600mF	$70 \text{m}\Omega$	±20%	39mm x 17mm	2.40mm

¹At 25°C DC. ²Measured using a 0.5A step in current @ 25°C.

		aunge			
Parameter	Name	Conditions	Min	Max	Units
Terminal Voltage	Vc			5.8	V
Temperature	Т		-40	+85	С°

Table 2: Absolute Maximum Ratings

Table 3: Electrical Characteristics

	Iour onuració					
Parameter	Name	Conditions	Min	Typical	Max	Units
Terminal Voltage	Vc				5.5	V
Leakage Current ³	ΙL	4.5V, 25°C 72hrs		3.5	5	μA
RMS Current	I _{RMS}	25°C			4.4	A
Peak Current ⁴	l _P	25°C			22	А

³Refer to cap-XX for details. ²Single pulse, non repetitive current.

Definition of Terms

In its simplest form, the Equivalent Series Resistance (ESR) of a capacitor is the real part of the complex impedance. In the time domain it can be found by applying a step discharge current to a charged capacitor as in figure 2. In this figure the supercapacitor is pre-charged and then discharged with a current pulse (I). The ESR is found by dividing the instantaneous voltage step (ΔV) by I. The instantaneous capacitance (C_i) can be found by taking the inverse of the derivative of the voltage and multiplying it by I. The effective capacitance (C_e) is found by dividing the total charge removed from the capacitor (ΔQ_n) by the voltage lost by the capacitor (ΔV_n). Note that ΔV , or IR drop, is not included because very little charge is removed from the capacitor during this time. C_e shows the time response of the capacitor and it is useful for predicting circuit behavior in pulsed applications.

In the example of Fig 2, using an HS206, $\Delta V = 4.97V - 4.89V = 0.08V$, I = 1.34A, so ESR = 0.08V/1.34A = 59.7m Ω . Similarly for a $\Delta V_n = 4.88V - 4.83V = 0.05V$, $\Delta t_n = 0.02s$, and I = 1.4A. Therefore, C = 1.4A X 0.02s/0.05V = 560mF.

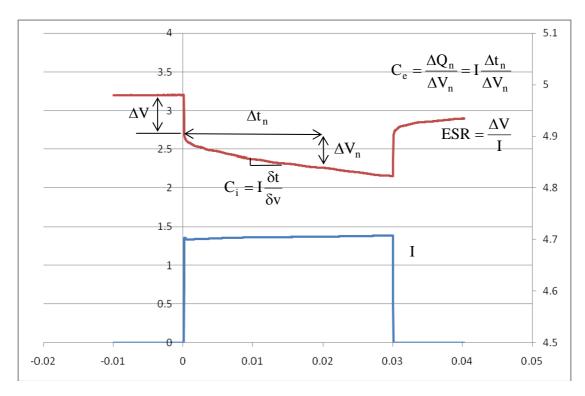


Figure 2: definitions for Effective Capacitance, Instantaneous Capacitance and ESR

DC Capacitance

CAP-XX measures DC capacitance by charging the supercapacitor to 4.5V then disconnecting the supercapacitor from the source, and applying a constant current discharge of 100mA. We measure the time taken to drop from 3V to 1V, so C = 100mA x time taken to drop from 3V to 1V/2V.

In the example of Fig 3, for a $\Delta V_n = 3.0V - 1.0V = 2V$, the corresponding $\Delta t_n = 22.52s - 11.72s = 10.8s$. C = I X $\Delta t_n/\Delta V_n$ where I = 0.105A, therefore C = 0.105x11.2s /2.0V = 567mF.

HS206 Supercapacitor Datasheet Rev 1.1, Aug 2008

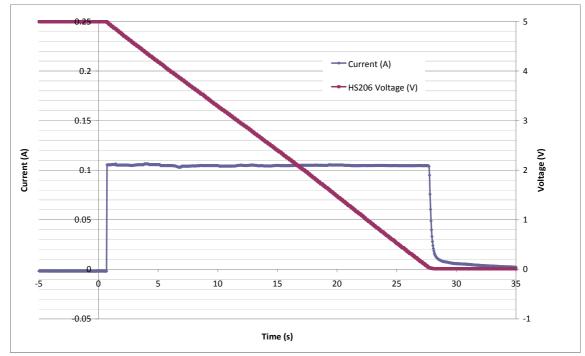
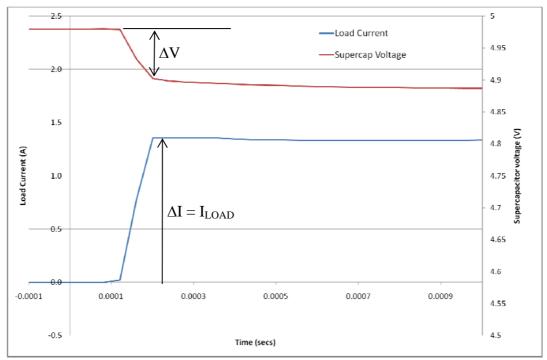



Fig 3: Measurement of DC capacitance

ESR Measurement

CAP-XX measures ESR by measuring the voltage drop across the supercapacitor when a current step is applied to a supercapacitor. The supercapacitor is first charged to 4.5V then disconnected from the source, and finally the current step applied and the voltage drop measured.

In the example of Fig 4 below $\Delta V = 4.98V - 4.90V = 80mV$ and $\Delta I = 1.33A$ (load pulse), therefore ESR = $\Delta V/I = 60m\Omega$.

Page 3 of 11 **NOTE:** CAP-XX reserves the right to change the specification of its products and any data without notice. CAP-XX products are not authorized for use in life support systems. © CAP-XX, 2008

Units 9-10/12 Mars Road Lane Cove NSW 2066 Australia

Tel +61 2 9420 0690 Fax +61 2 9420 0692 www.cap-xx.com CAP-XX Pty Limited ABN 28 077 060 872 ACN 077 060 872

Effective Capacitance

Figure 5 shows the Effective Capacitance for the HS206 @ 25° C. The supercapacitor was charged to and held at 4.5V until the current drawn by the supercapacitor dropped to less than 100µA. The supercapacitor was then disconnected from the source and a constant current discharge of 100mA was applied for 10 secs.

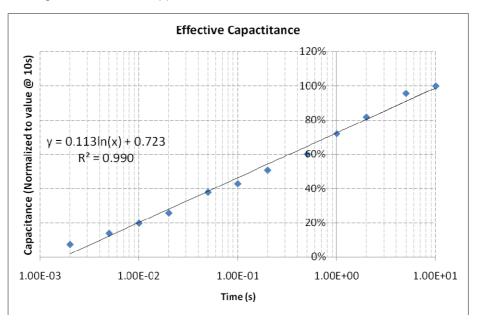
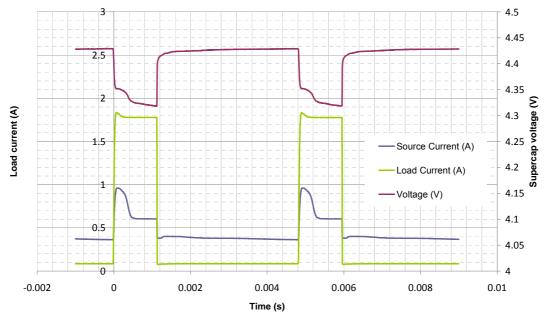



Figure 5: Effective Capacitance - charged to 4.5V and discharged with a 100mA pulse

Pulse Response

Figure 6 shows the voltage ripple for a class 10 GPRS pulse. A HS206 provides a 1.8A load pulse of 1.15ms duration @ 25% duty cycle and the source current is limited to 600mA, though there is some source current overshoot evident in the first 200 μ s. The low supercapacitor ESR and high effective capacitance result in the load seeing a voltage ripple of only 110mV. The supercapacitor is supplying the difference between the 1.8A load current and the 0.6A source current.

NOTE: CAP-XX reserves the right to change the specification of its products and any data without notice. CAP-XX products are not authorized for use in life support systems. © CAP-XX, 2008

Capacitance and ESR with temperature

Fig 7 below shows that DC capacitance does not vary over the operating temperature range.

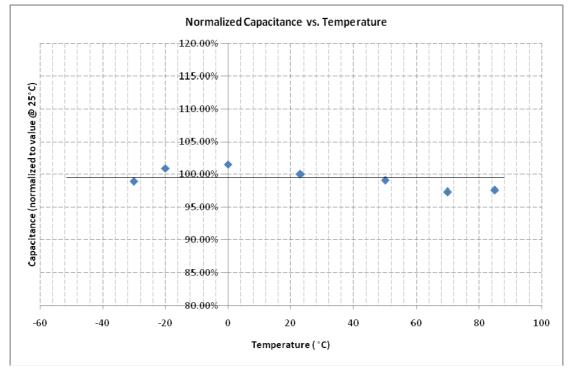
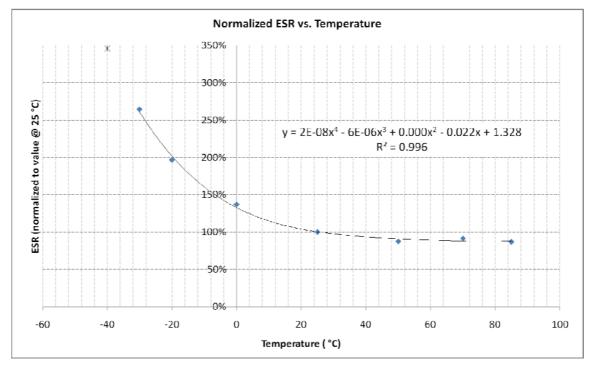
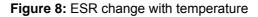




Figure 7: Capacitance change with temperature

Fig 8 shows the relationship between ESR and temperature. ESR at -40°C is ~ 350% of ESR at 25°C.

Page 5 of 11 **NOTE:** CAP-XX reserves the right to change the specification of its products and any data without notice. CAP-XX products are not authorized for use in life support systems. © CAP-XX, 2008

Frequency Response

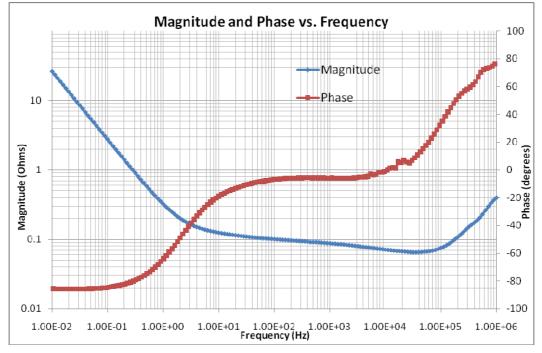


Figure 9: Frequency Response of Impedance (biased at 4.5V with a 50mV test signal)

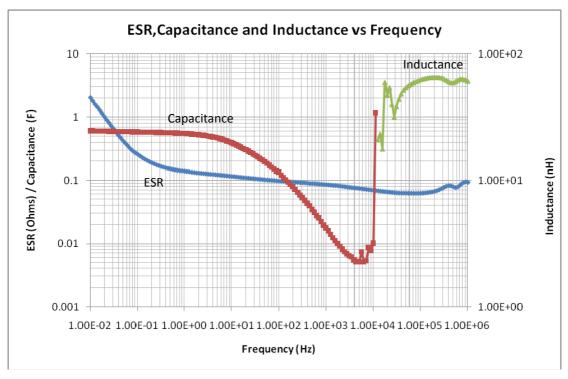


Figure 10: Frequency Response of ESR, Capacitance and Inductance

Fig 9 shows the supercapacitor behaves as an ideal capacitor until approx 3Hz when the magnitude no longer rolls off proportionally to 1/freq and the phase crosses -45°. Performance of supercapacitors with frequency is complex and the best predictor of performance is figure 5 which shows the effective capacitance as a function of pulse width. Inductance becomes significant above 10Khz and is approx 25nH. The HS206 is self resonant in the 3 KHz range.

Page 6 of 11 **NOTE:** CAP-XX reserves the right to change the specification of its products and any data without notice. CAP-XX products are not authorized for use in life support systems. © CAP-XX, 2008

Spice Model

Please refer to <u>www.cap-xx.com</u> for a SPICE model of our supercapacitors. Note that the spice model predicts freq and pulse response, not leakage current over the first 120hrs, prior to equilibrium being reached.

Leakage Current

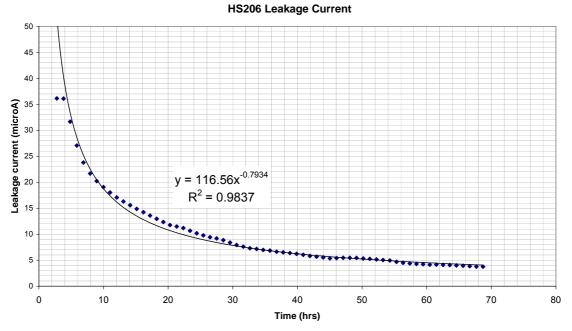


Figure 11: Average leakage current @ 25°C, 4.5V

Figure 11 shows how average leakage current decays with time. After 24hrs @ 25° C, leakage current has decayed to approx 10μ A and after 72hrs it has decayed to less than 5μ A. This is because the capacitance in a supercapacitor is distributed. This means that although the final terminal voltage has been reached, the device still draws some charge current which continues to decay until it reaches a final equilibrium value of leakage current. At 50°C, leakage current is approximately double the leakage current at 25°C.

Charge Current

Supercapacitors require a minimum charge current before they behave as expected, i.e. they follow $\Delta V = I \times \Delta t / C$, for constant current charging from 0V. For the HS206 this minimum charge current = 50µA. Figure 12 illustrates the voltage over time for a single cell of the HS206 using 500µA, 200µA, 100µA, 50µA and 35µA to achieve a final voltage of 2.25V. Note that the minimum charge current at which charging follows $\Delta V = I \times \Delta t / C$ is 200µA.

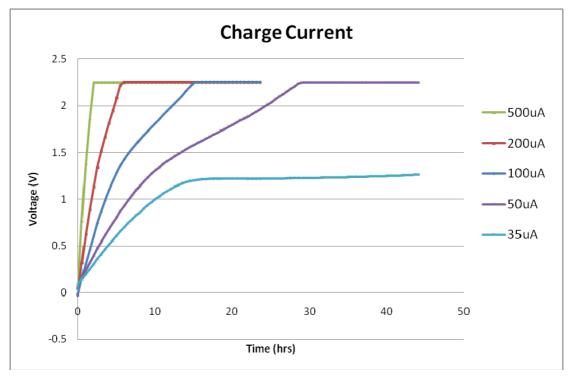


Figure 12: Voltage vs. Time for $500\mu A,\,200\mu A,\,100\mu A$ $50\mu A$ and $35\mu A$ Charge Currents at $25^{\circ}C$

Soldering

Capacitor Internal Temperature when Soldering

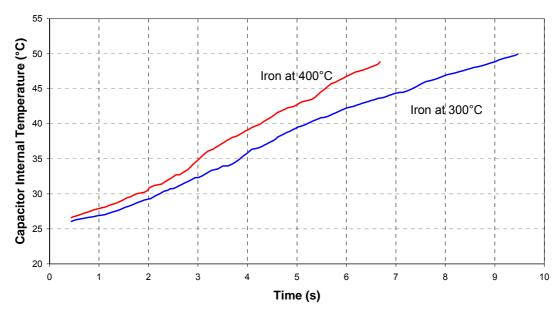
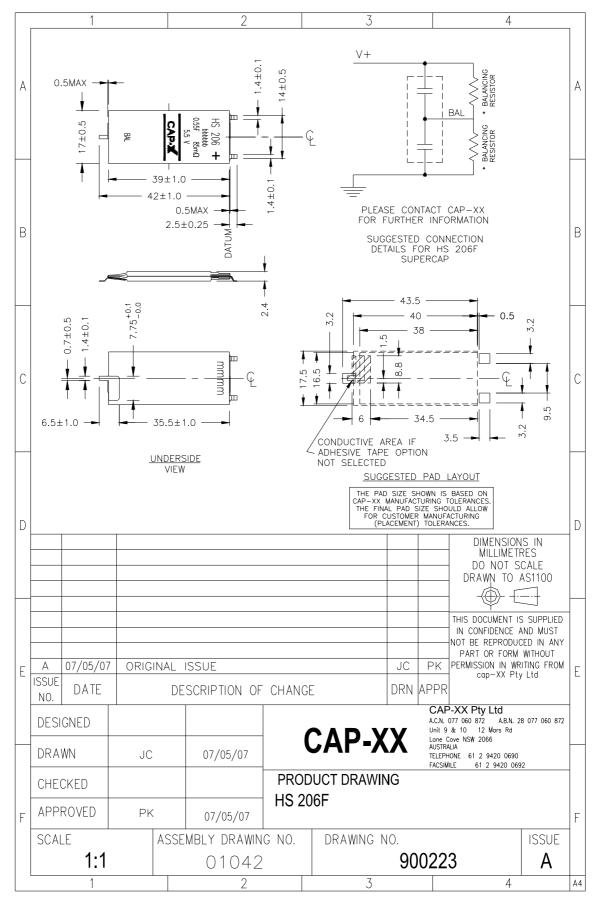


Figure 13: Capacitor temperature rise when soldering

The recommended maximum soldering time is 5 seconds when using an iron at 400 $^\circ\text{C}$ in an ambient temperature of 25 $^\circ\text{C}.$

Vibration


Tested to IEC68-2-6				
Туре	Sinusoidal			
Frequency	55Hz-500Hz			
Amplitude	0.35mm±3dB (55Hz to 59.55Hz)			
	5g±3dB (59.55Hz to 500Hz)			
Sweep Rate	1 Oct/min			
No. of Cycles	10 (55Hz-500Hz-50Hz)			
No. of Axis	3 orthogonal			
Results	No electrical or mechanical degradation (adhesive not required)			

Shock

Tested to IEC68-2-27				
Pulse Shape	Half Sine			
Amplitude	30g±20%			
Duration	18ms±5%			
No. of Shocks	3 in each direction (18 in total)			
No. of Axis	3 orthogonal			
Results	No electrical or mechanical degradation (adhesive not required)			

Fig 14: Mechanical drawing

CAP-XX products are not authorized for use in life support systems.

HS206 Supercapacitor Datasheet Rev 1.0, June 2007

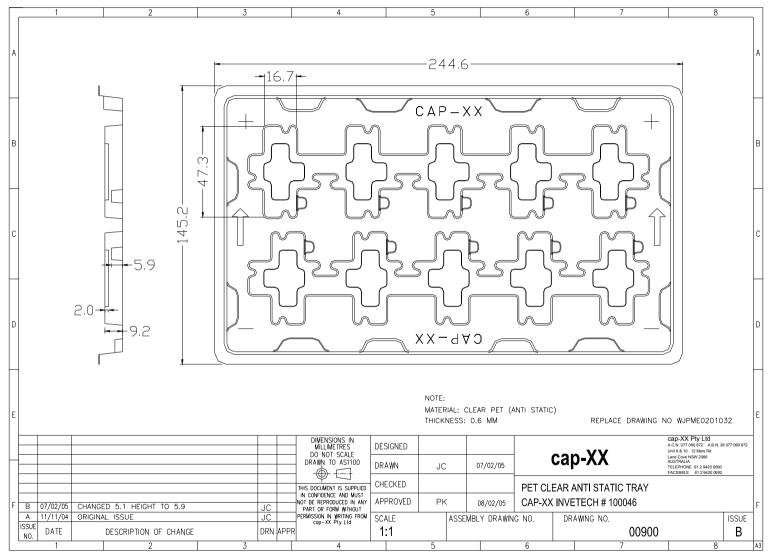


Figure 15: Packaging Tray

Page 11 of 11 NOTE: cap-XX reserves the right to change the specification of its products and any data without notice. cap-XX products are not authorized for use in life support systems. © cap-XX, 2007