

HW207 SUPERCAPACITOR Datasheet Rev 1.1

Features

- High capacitance (400mF @ DC)
- Low ESR (105m Ω @ step change in current);
- High peak current
- High pulsed power
- Thin form factor

Typical Applications

- High power LED Flash
- Improved audio performance
- **Automatic Meter Reading**
- PC Cards, Compact Flash Cards & USB
- Load levelling for PDAs & cell phones
- Power support during battery contact bounce

Electrical Specifications

Table 1: Nominal Characteristics

Device	Nominal Nominal Capacitance ¹ ESR ²		Tolerance about nominal value	Footprint	Height	Weight	
HW207	400mF	105m $Ω$	±20%	28mm x 17.5mm	2.90mm	1.49 gms	

¹At 23°C DC. ²Measured using a 0.5A step in current @ 23°C.

Table 2: Absolute Maximum Ratings

Parameter	Name	Conditions	Min	Max	Units
Terminal Voltage	Vc			5.8	V
Temperature	T		-40	+85	°C

Table 3: Electrical Characteristics

Table 6. Electrical enalactions							
Parameter	Name	Conditions	Min	Typical	Max	Units	
Terminal Voltage	Vc				5.5	٧	
Leakage Current ³	Ι _L	5.5V, 23°C 72hrs		1.7	5	μΑ	
RMS Current⁴	I _{RMS}	23°C			3.6	Α	
Peak Current ⁵	I _P	23°C			57	Α	

³Refer to cap-XX for details. ⁴Continuous charge and discharge for 2min operation. ⁵Single pulse, non repetitive current.

Definition of Terms

In its simplest form, the Equivalent Series Resistance (ESR) of a capacitor is the real part of the complex impedance. In the time domain it can be found by applying a step discharge current to a charged capacitor as in figure 1. In this figure the supercapacitor is pre-charged and then discharged with a constant current pulse (I). The ESR is found by dividing the instantaneous voltage step (ΔV after 50µsec from start of current pulse) by I. The instantaneous capacitance (C_i) can be found by taking the inverse of the derivative of the voltage and multiplying it by I. The effective capacitance (C_e) is found by dividing the total charge removed from the capacitor (ΔQ_n) by the voltage lost by the capacitor (ΔV_n). Note that ΔV , or IR drop, is not included because this is the voltage drop due to ESR. C_e shows the time response of the capacitor and it is useful for predicting circuit behaviour in pulsed applications.

In the example of Fig 1, using an HW207, $\Delta V = 5.48V - 5.34V = 0.14V$, I = 2.05A, so ESR = 0.14V/2.05A = 68.3m Ω . Similarly for C_{effective} at 100 μ sec $\Delta V_n = 5.34V - 5.32V = 0.02V$, $\Delta t_n = 100\mu$ sec, and I = 1.97A. Therefore, C = 1.97A X 100*10⁻⁶s/0.02V = 9.85mF.

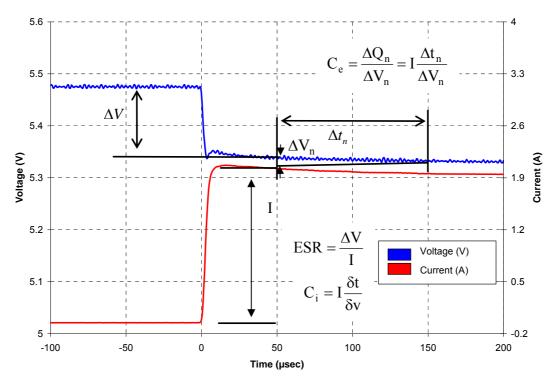


Figure 1: Definitions for Effective Capacitance, Instantaneous Capacitance and ESR

DC Capacitance

CAP-XX measures DC capacitance by charging the supercapacitor to 5.5V then disconnecting the supercapacitor from the source, and applying a constant current discharge of 100mA. At Cap-XX, capacitance is measure using the time taken for the voltage to drop from 3V to 1V, so $C = 100mA \times (time taken to drop from 3V to 1V) / 2V$.

In the example of Fig 2, for a ΔV_n = 3.0V – 1.0V = 2V, the corresponding Δt_c = 9.25 – 1.69s = 7.65s. C = I X $\Delta t_c/\Delta V_c$ where I = 0.105A, therefore C = 0.105x7.56s /2.0V = 402mF.

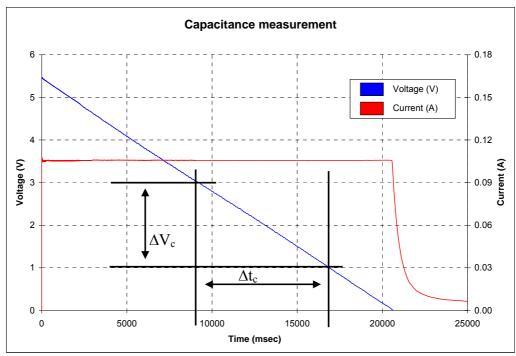


Figure 2: Measurement of Capacitance

ESR Measurement

CAP-XX measures ESR by measuring the voltage drop across the supercapacitor when a current step is applied to a supercapacitor. The supercapacitor is first charged to 5.5V then disconnected from the source, and finally the current step applied and the voltage drop after 50µsec is measured.

In the example below ΔV = 5.47V - 5.28V = 190mV and ΔI = 2.05A (load pulse), therefore ESR = $\Delta V/I$ = 92.7m Ω .

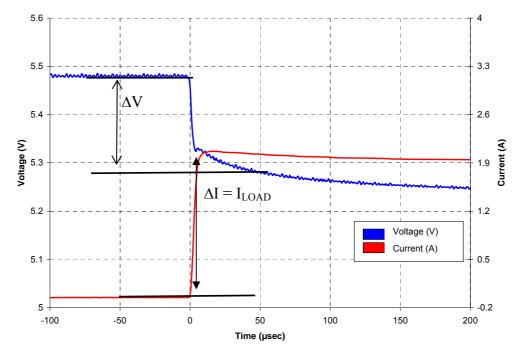


Figure 3: Measurement of ESR

Effective Capacitance

Figure 4 shows the Effective Capacitance for the HW207 @ 23°C. The supercapacitor was charged to and held at 5.5V until the current drawn by the supercapacitor dropped to less than 1mA. The supercapacitor was then disconnected from the source and a constant current discharge of 100mA was applied. The capacitance was measured at different times during the discharge.

Normalised Capacitance vs Time @ 23C

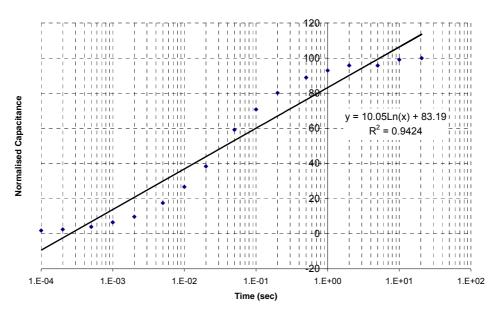


Figure 4: Effective capacitance at different times during the discharge.

Pulse Response

Figure 5 shows the voltage ripple for a class 10 GPRS pulse. A HW207 provides a 1.8A load pulse of 1.15ms duration @ 25% duty cycle and the source current is limited to 600mA, though there is some source current overshoot evident in the first $100\mu s$. The low supercapacitor ESR and high effective capacitance result in the load seeing a voltage ripple of only 330mV. The 1.8A load current would consist of 0.6A current from the supply and the remaining 1.2A from the supercapacitor.

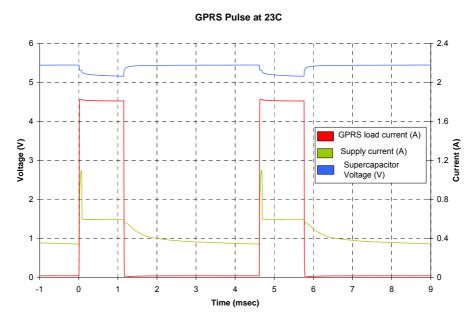


Figure 5: Class 10 GPRS pulse at 23C

Capacitance and ESR with temperature

Figure 6 and 7 below show normalized ESR and Capacitance respectively at different operating temperatures ranging from -40C to 85C.

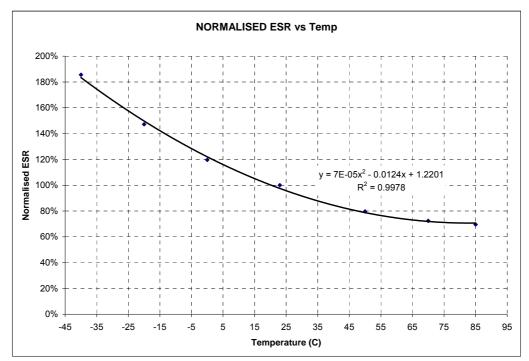


Figure 6: Normalised ESR at different temperatures

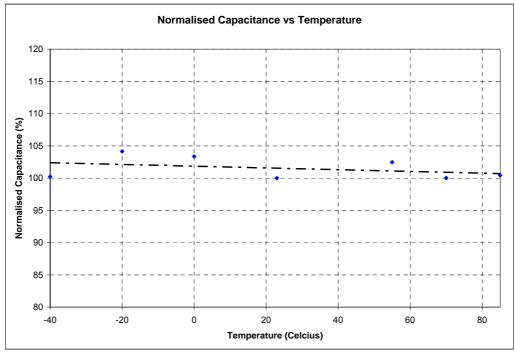


Figure 7: Normalised capacitance at different temperature

Frequency Response

Fig 9 shows the supercapacitor behaves as an ideal capacitor until approx 1Hz when the magnitude no longer rolls off proportionally to 1/freq and the phase crosses -45°. Performance of supercapacitors with frequency is complex and the best predictor of performance is figure 4 which shows the effective capacitance as a function of pulse width. Inductance becomes significant above 20 kHz and is approx 100nH at 100 kHz and above.

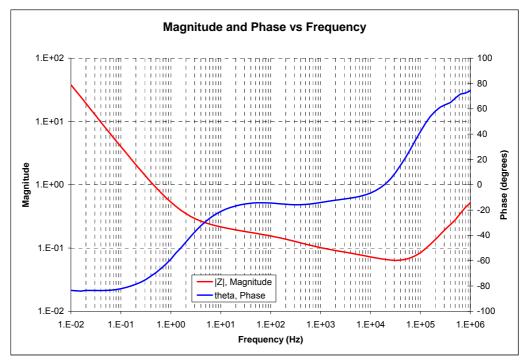


Figure 8: Frequency response of HW207 (biased at 5.5V with 50mV test signal)

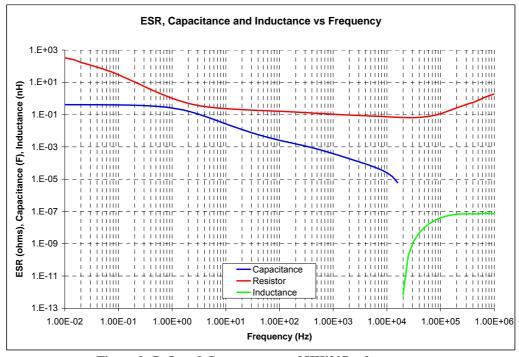


Figure 9: R, L and C components of HW207vs frequency

Spice Model

SPICE model of our supercapacitors can be found on our web site, www.cap-xx.com. Note that the spice model predicts freq and pulse response, not leakage current over the first 120hrs, prior to equilibrium being reached.

Leakage Current

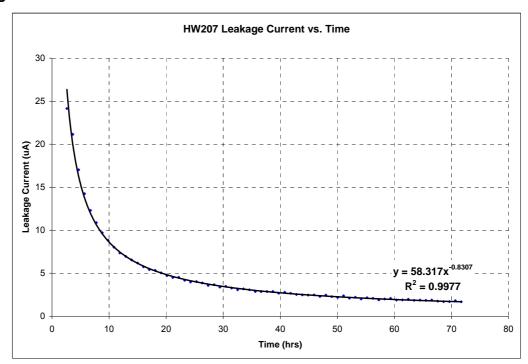


Figure 10: HW107 Leakage current vs. time

Figure 10 shows how average leakage current decays with time. After 24hrs @ 23° C, leakage current has decayed to under 5μ A and after 72hrs it has decayed to less than 2μ A. This is because the capacitance in a supercapacitor is distributed. This means that although the final terminal voltage has been reached, the device still draws some charge current which continues to decay until it reaches a final equilibrium value of leakage current. Figure 11 below shows leakage current at 23C and 70C versus time.

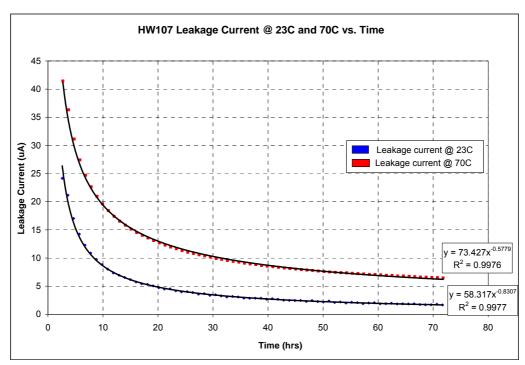


Figure 11: HW107 Leakage Current at 23C and 70C vs. Time

Charge Current

Supercapacitors require a minimum charge current before they behave as expected, i.e. they follow ΔV = I x Δt / C, for constant current charging from 0V. For a single cell of HW207 this minimum charge current = $50\mu A$. Figure 12 illustrates the voltage over time for a single cell of the HW207 using $50\mu A$, $100\mu A$, $200\mu A$ and $500\mu A$ to achieve a final voltage of 2.75V.

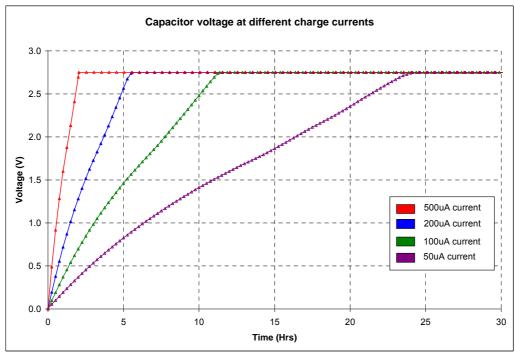


Figure 12: Voltage vs. Time for 50μA, 100μA, 200μA, 500μA charging currents at 23C

Soldering

Capacitor Internal Temperature when Soldering

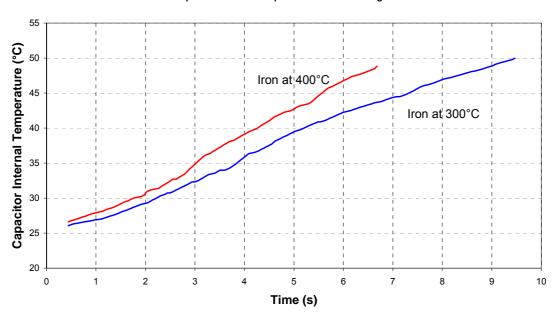


Figure 13: Capacitor temperature rise when soldering

The recommended maximum soldering time is 5 seconds when using an iron at 400° C in an ambient temperature of 23° C.

Vibration

Tested to IEC68-2-6

Type Sinusoidal Frequency 55Hz-500Hz

Amplitude 0.35mm±3dB (55Hz to 59.55Hz)

5g±3dB (59.55Hz to 500Hz)

Sweep Rate 1 Oct/min

No. of Cycles 10 (55Hz-500Hz-50Hz)

No. of Axis 3 orthogonal

Results No electrical or mechanical degradation (adhesive not required)

Shock

Tested to IEC68-2-27

Pulse Shape Half Sine
Amplitude 30g±20%
Duration 18ms±5%

No. of Shocks 3 in each direction (18 in total)

No. of Axis 3 orthogonal

Results No electrical or mechanical degradation (adhesive not required)

Mechanical Drawings

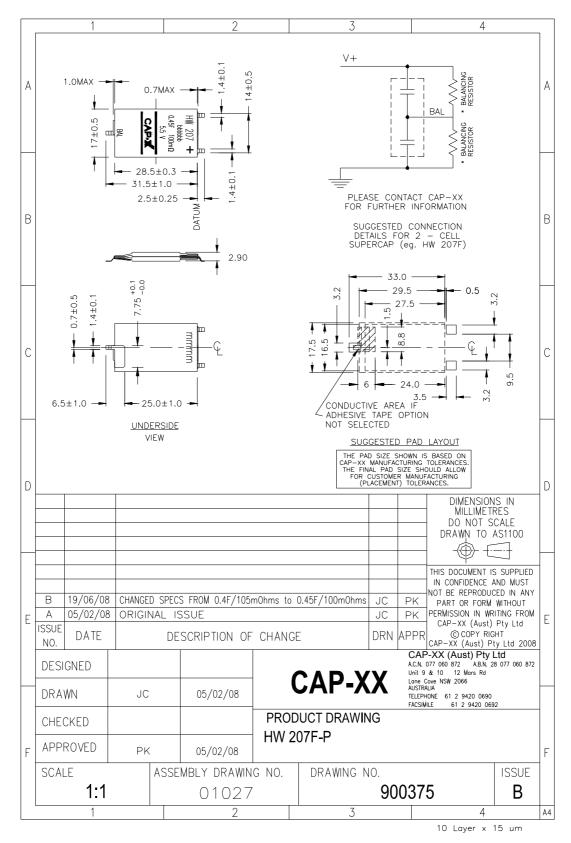


Figure 13: HW207 Product drawing

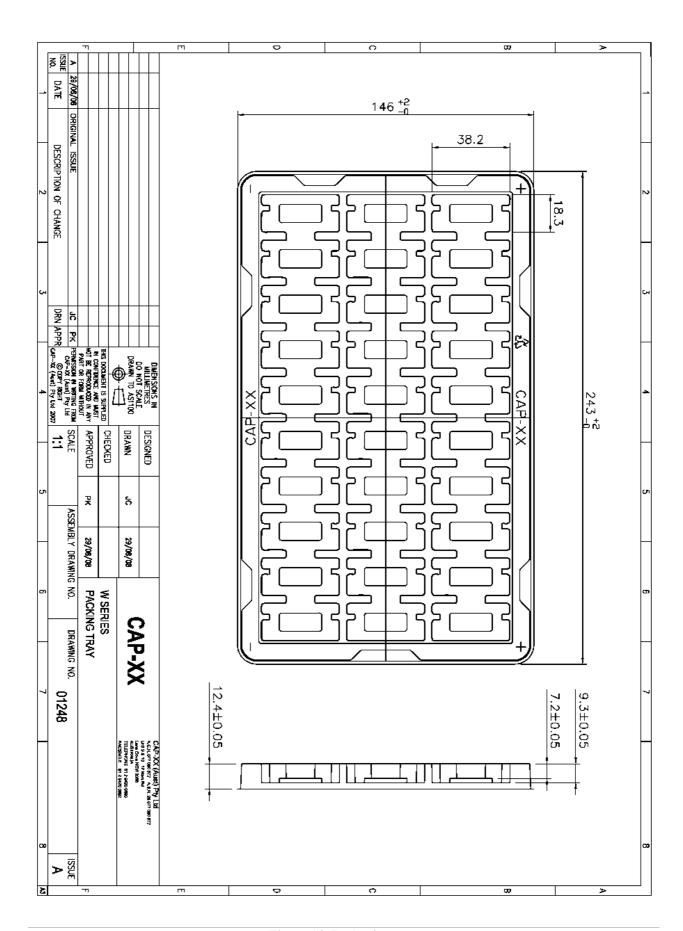


Figure 14: Packaging tray