

BritePower[™] SSD - Faster, Safer, Longer Supercapacitors in Solid State Drives March, 2009

- Solid State Drives (SSDs) are a growing presence in data storage markets because they offer:
 - Plug & play compatibility with HDDs (form factor, interface,++)
 - Faster access, read & write speeds > more IOPS than HDDs
 - More rugged & durable (shock, vibration, temperature)
 - More reliable over a longer operational life (no moving parts)
 - Lower power consumption, quieter & cooler than HDDs
- Which in turn, delivers a lower total cost of ownership:
 - lower maintenance costs
 - higher productivity
 - less redundancy requirements
 - longer operational life
 - lower power consumption, etc.

NAND flash memory has some limitations:

- Because
 - Blocks must be erased before a page can be programmed, and
 - Erase performance & block utilization degrades with use, and
 - Write speed decreases as density increases (MLC<<SLC)...
- Data transfer speed exceeds flash write speed
- Because
 - Data retention decreases with use (bit degradation), and
 - Flash cells have a limited erase/write cycle life (endurance), and
 - Endurance decreases as density increases (MLC<<SLC)...
- Wear leveling & error correction algorithms are essential to SSD performance, reliability & life

Because data transfer speed exceeds flash write speed...

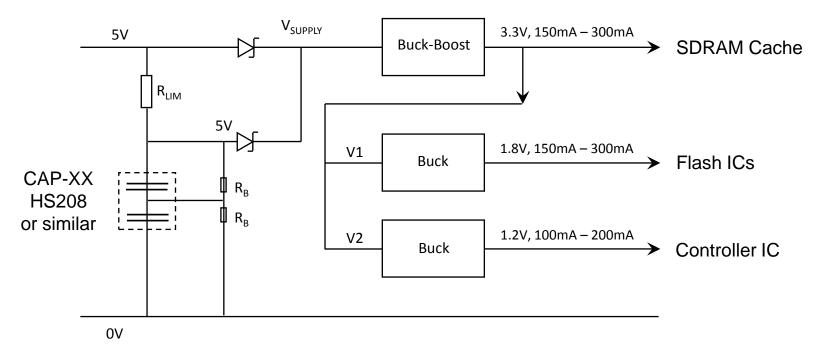
- SSD write performance will benefit from a data cache
 - The designer has 3 options:
 - 1. No cache (poor write performance limited to flash write speed)
 - 2. Unprotected cache (better write speed, but cache can be lost)
 - 3. Protected cache (cache is saved to flash memory at power down)
- Because metadata* requires many writes for every file operation, and is growing with SSD capacity...
- SSDs need a large metadata cache
 - The designer has 3 options:
 - 1. Use flash memory (has integrity, capacity & endurance costs)
 - 2. Use a non-volatile cache (nvRAM has cost & scalability issues)
 - **3**. Use a volatile cache (with a back-up power supply)

* Metadata includes information on wear leveling, error correction, translation tables, physical/logical address maps, erase counts, scratch pads, bad/free block lists, file allocation tables, and so on

SSD Design Options: Summary

- No data cache:
 - Performance cost (lower write speed)
 - Integrity cost (lose latest metadata on power loss)
 - Capacity & endurance cost (metadata is stored in flash memory)
- Unprotected cache:
 - Performance benefit (faster write speed)
 - Integrity cost (lose data cache & latest metadata on power loss)
 - Capacity & endurance cost (metadata is stored in flash memory)
- Protected cache:
 - SDRAM with a supercap providing a back-up power supply
 - Performance benefit (faster write speed)
 - Integrity benefit (data cache & latest metadata is protected)
 - Capacity & endurance benefit (metadata is stored in cache)

Why use CAP-XX?


- CAP-XX supercapacitors offer:
 - Thin, flat & small prismatic package (cf. batteries & can supercaps)
 - **High energy** (up to 1.8F for longer write times after power loss)
 - **High power** (minimizes voltage droop & supports high currents)
 - **High cell voltage** (increases headroom for longer hold-up times)
 - Long life (low rate of C loss & >100K charge/discharge cycles)
 - **Excellent low temperature operation** (unlike batteries)
 - **High temperature rating** (85 C, better than batteries & can supercaps)
 - Environmentally friendly (RoHS, WEEE, no hazardous materials)

A high initial C, high voltage/cell & high temperature rating means CAP-XX supercaps offer a longer operational life & greater reliability in a thin, flat small package ideal for SSDs

SSD Backup Power Supply

This diagram illustrates a simple design for power backup in an SSD using a supercapacitor.

The NAND flash is typically powered at 1.8V (sometimes 3.3V), SDRAM at 3.3V & the controller at ~1.2V (sometimes 3.3V or 1.8V). Load currents & backup duration depend on the size of the SSD & cache. Typically, a 5V supply is available.

RLIM protects the 5V supply from the supercapacitor in-rush current. Over-voltage protection is not required with a CAP-XX H series supercapacitor. If RLIM = 5 Ω , maximum in-rush current = 1A & it will take ~4.5s to charge the supercap. Using a buck-boost for the 3.3V rail allows the supercapacitor to discharge to the minimum input voltage of the converter. This will support the SSD for longer, enabling safe storage of a greater amount of cached data.

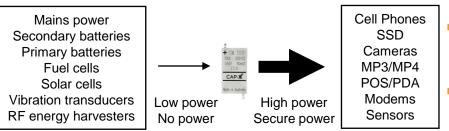
- Key questions on SSD power architecture:
 - What is the source voltage?
 - USB, PCI, etc.
 - LDO or Buck? Current limit? Voltage good?
 - What's the Max & Min supply voltage & current for the
 - SSD controller?
 - SDRAM cache?
 - NAND flash memory?
 - Buck-boost vs LDO/Buck to loads
 - What back-up duration is required?
 - What is the form factor / SSD capacity / SDRAM capacity?
 - What realistic operating conditions are expected?
 - What is the target operational life?

More about CAP-XX

What Supercapacitors Do

Supercapacitor functions

Secure power


Provides reliable interim power, even if the primary source fails or fluctuates

Energy storage

Stores energy from low power sources, enabling support for high power loads

Pulse power

Supplies peak power to the load while drawing average power from the source

User benefits

- Reduces the size & weight of the battery / power source required
- Improves run-time & battery life, particularly at cold temperatures
- Enables more power-hungry features, being used more often
- Can remove the need for a battery & harvest energy from clean sources
- Protects against accidental power loss or fluctuations/interruptions
- Doesn't need to be replaced like batteries (unlimited discharge cycles)
- Environmentally friendly & safe

Major Applications

BritePower™

- Secure power solutions for SSDs, ruggedized PDAs, handheld POS terminals, wireless data loggers, condition monitors, location trackers, automated metering, etc.
- Energy storage & power support solutions for renewable & recaptured energy
- Pulse power solutions for wireless modems & other high current applications such as LED flash, electronic locks, GPS, etc.

BriteFlash[™]

- Driving high power LED flash for high quality images in digital cameras & phones
- BriteSound™
 - Peak power support in portable audio

Global Presence

© CAP-XX CONFIDENTIAL 2009 12

Quality Standards

- Certifications achieved
 - ISO 9001
 - Sony Green Partner
- Compliances established
 - Full MSDS available under NDA
 - RoHS & WEEE compliant
 - Lead free, organo-halogen free, bromine free
 - Sony Ericsson Design for Environment requirements
 - Motorola Restricted Substances list
- Ongoing Approvals
 - Nokia Global Supplier requirements
 - Samsung CST component approval

Reliability

Reliability tests to international standards available for:

- Vibration
- Mechanical shock (acceleration)
- Thermal shock
- Temperature cycling
- High temperature
- Low temperature
- Humidity

Safety tests to international standards available for:

- Flammability
- Over-heating
- Compression
- Puncture

CAP-XX supercapacitors are completely safe

- Do not burn (no fire risk)
- Do not explode
- Can be over-charged or over-heated with no dangerous outcome
- Self protecting: fails open-circuit if abused

CAP-X

For more information, contact:

Peter Buckle VP Sales & Marketing <u>peter.buckle@cap-xx.com</u> **Or visit us at:** www.cap-xx.com Pierre Mars VP Applications Engineering pierre.mars@cap-xx.com

© CAP-XX CONFIDENTIAL 2009