

An Introduction to BriteFlash™ The high power LED flash solution for Camera Phones & Digital Still Cameras March, 2009

Who is CAP-XX?

- Market-driven electronic components manufacturer
- World leader in thin, flat, small supercapacitors
- Our products deliver a number of benefits to enhance the performance of mobile multimedia devices
 - BriteFlash[™] for a brighter flash & better photos
 - BriteSound[™] for louder, clearer audio output
 - BritePower™ for secure power, pulse power & energy storage

- Everyone wants better photos
- But end-user buying behaviour actually works against achieving this:

User Requirement	Effect on Camera
"The more megapixels the better"	Smaller pixels
"I want more features, and I want it smaller"	Even smaller pixels
"I want an optical zoom lens"	Smaller aperture (higher f#)
"I like thinner devices"	More lens shading (larger CRA)

- Semiconductor processes get smaller every year, so what's the big problem with shrinking pixels?
- Semiconductor improvements do improve camera performance (eg, smaller feature sizes allow bigger fill factors, & copper wiring allows reduced pixel shading)
 but...
- The energy in light is comprised of a finite number of photons. If these are spread across more, smaller pixels, the signal in each gets smaller, but the noise remains constant
- The result is reduced camera sensitivity, due to a reduced signal:noise ratio, giving a poorer image

 How can I capture great images & still make phones & cameras that people want to buy?

Ways to improve performance

Technique	Advantage	Disadvantage	
Image stabilisation	 Longer exposure time 	 Motion blur Difficult to implement well without gyro 	
High ISO gain	 Increased analogue domain gain Increased noise Shot noise 		
Software lens	Software de-blurring allows large aperture lens Software de-blurring allows large aperture lens Software de-blurring allows camera		
Conventional LED	 Increased light 	 Low performance Bad reaction from subject 	
 Xenon strobe Very bright Short duration flash 		 Large size High voltage Needs mechanical shutter for best performance 	
High power pulsed LED	 Bright flash Controllable light energy 	 Requires very high LED current 	

The power problem

- High current loads on the battery are completely asynchronous
- Several may require power at same time
- As battery discharges, current to constant power loads increases
- Battery pack ESR can be >100m Ω with a current limit of ~3A

The CAP-XX solution

- High capacitance, low ESR supercap provides bulk energy storage to buffer a high power supply rail
- Battery & DC-DC supply average power, supercap supplies peaks

- Using a CAP-XX supercapacitor, it is possible to drive very high LED currents for an ultra-bright LED flash
 - For example: 2x Lumileds PWF4 LEDs, driven at 2.5A each, deliver more light than the SEMC K800i xenon strobe
- This BriteFlash[™] solution can be <2mm thick
- The supercapacitor powering BriteFlash can also be used to enhance other features in the device
 - Ionger talk time & longer battery life
 - better audio
 - improved low temperature operation
- The following example images are taken with actual camera phones:

Which photo do you prefer?

Standard Mot RAZR V6

BriteFlash[™] vs xenon

Standard Nokia N73

BriteFlash™ N73

SonyEricsson K800i (xenon strobe)

Xenon light energy

Xenon phones, light energy

BriteFlash[™] light energy

LED Flash Light Energy

Light energy @ 1m – All sources

Xenon and LED Flash Light Energy @ 1m

CAP-X Light energy @ 2m – All sources

Light Energy Comparison @ 2m

Conclusion: BriteFlash™ performs better than xenon

- Xenon market cost ~US\$7 for a suitable strobe unit
- Xenon requires additional components in the handset
 - Mechanical shutter (US\$1)
 - White LED for Video lighting (US\$1.5)
- Total implementation cost for xenon is ~US\$9.5
- CAP-XX BriteFlash[™] does not require a mechanical shutter or additional LEDs for video lighting
- Total implementation cost for BriteFlash[™] is ~US\$6

Conclusion: BriteFlash[™] is cheaper than xenon

And space...?

Xenon solutions require large, dielectric capacitors, a discharge tube & associated electronics. They occupy a lot of space

Supercaps are low volume

Supercaps are thin, flat & small, with ultra-high energy & power density

BriteFlash offers as much as a 50% volumetric saving over a xenon flash system

Conclusion: BriteFlash™ is smaller, lighter & more robust than xenon

	Xenon	Supercap	
Light machine	Xe filled quartz tube	Si LED	
	•15x5x3mm = 0.225cc	•2x1.6x2x0.7mm = 0.00448cc	
Energy Storage	Electrolytic cap	Supercap	
	2x7Øx18mm = 1.766cc	2x17x28.5x1mm = 0.96cc	
FPC circuit	10x30x0.2mm = 0.06cc 10x30x0.2mm = 0.06cc		
Control chip	4x4x1 = 0.016cc	4x4x1 = 0.016cc	
Transformer	5x5x4mm = 0.1cc	n/a	
Light sensor	3x3x1mm = 0.009cc	n/a	
IGBT	1.5x1.5x0.8mm = 0.0018cc n/a		
Total	~2.20cc	~1.04cc	

A	Burn	Burn the fully charged supercapacitor @ 4.5V with alcohol lamp. No ignition, no fire, no scattering of pieces and/or sparks over 70cm
В	Heat	Leave for 1hr @ 130°C at rated voltage = 4.5V, No smoke, no fire, no gas emission
С	Pierce	Prick the fully charged supercapacitor with a needle. No fire, no scattering of pieces and/or sparks over 70cm
D	Press	Press the fully charged supercapacitor 20 2/3 of its thickness with a 10mm diameter pole. No smoke, no fire, no gas emission

Conclusion: CAP-XX parts are very safe

Quality

- Certifications achieved
 - ISO 9001
 - Sony Green Partner
- Compliances established
 - RoHS & WEEE compliant
 - Lead-Free product
 - Sony Ericsson Design for Environment requirements
 - Motorola Restricted substance list
- Ongoing Approvals
 - Nokia Global Supplier requirements
 - Samsung Component Certification

Conclusion: CAP-XX parts are high quality

Reliability

- Vibration
 - Tested to IEC68-2-6
 - Type Sinusoidal
 - Frequency 55Hz-500Hz
 - Amplitude 0.35mm 3dB (55Hz to 59.55Hz)
 - 5g 3dB (59.55Hz to 500Hz)
 - Sweep Rate 1 Oct/min
 - No. of Cycles 10 (55Hz-500Hz-50Hz)
 - No. of Axis 3 orthogonal

Conclusion: No electrical or mechanical degradation

- Shock
 - Tested to IEC68-2-27
 - Pulse Shape Half Sine
 - Amplitude 30g 20%
 - Duration 18ms 5%
 - No. of Shocks 3 in each direction (18 in total)
 - No. of Axis 3 orthogonal

Conclusion: No electrical or mechanical degradation

Reliability

Ageing

- At full rated voltage & 40C, it takes ~20,000h for ESR to double
- This equates to 2.3 years of constant flashing, or
- More than 1.2m photo sessions if the flash is turned on for 1 minute on each occasion
- For many applications, life could be far longer, depending on the operating conditions, initial C & initial ESR

Conclusion: CAP-XX parts are very reliable

- CAP-XX supercaps & BriteFlash power architecture are at the centre of a thriving LED flash ecosystem
- Major components are either being developed or optimised to utilise supercapacitors:
 - LED flash driver chips, Power Management ICs from eg, AnalogicTech, OnSemi & more
 - High current LEDs from eg, Lumileds, SeoulSemi & more
 - Camera modules/ISPs supporting pulsed LED flash from eg, Sony DIG, Omnivision & more
 - Flash modules built around the BriteFlash[™] solution from eg, SeoulSemi, Stanley & more
- Conclusion: BriteFlash solutions are available now for simple integration into mobile phones & cameras

- CAP-XX BriteFlash[™] delivers better performance than similar xenon strobe flash solutions
- CAP-XX BriteFlash[™] is lower cost than xenon
- CAP-XX BriteFlash[™] is smaller than xenon
- CAP-XX BriteFlash[™] is safe & reliable
- CAP-XX BriteFlash[™] is ready now

Conclusion: CAP-XX BriteFlash[™] is the best flash technology for mobile phones & small digital cameras

CAP-X

For more information, contact:

Peter Buckle VP Sales & Marketing <u>peter.buckle@cap-xx.com</u> **Or visit us at:** www.cap-xx.com Pierre Mars VP Applications Engineering pierre.mars@cap-xx.com

© CAP-XX CONFIDENTIAL 2009